
Neural Logic Network Learning using Genetic Programming

Chew Lim Tan, Henry Wai Kit Chia
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543�

tancl, chiawaik � @comp.nus.edu.sg

Abstract

Neural Logic Network or Neulonet is a hybrid of
neural network expert systems. Its strength lies in
its ability to learn and to represent human logic in
decision making using component net rules. The
technique originally employed in neulonet learn-
ing is backpropagation. However, the resulting
weight adjustments will lead to a loss in the logic
of the net rules. A new technique is now devel-
oped that allows the neulonet to learn by composing
net rules using genetic programming. This paper
presents experimental results to demonstrate this
new and exciting capability in capturing human de-
cision logic from examples. Comparisons will also
be made between the use of net rules, and the use
of standard boolean logic of negation, disjunction
and conjunction in evolutionary computation.

1 Introduction
There has been a fair amount of interest in training neural
networks using genetic programming [Golubski and Feur-
ing, 1999]. Gaudet [1996] applied genetic programming on
logic-based neural networks which basically represent stan-
dard logic (negation, conjunction and disjunction). Similarly,
an adaptive logic network [Armstrong and Thomas, 1996]
uses linear threshold units at the leaf node level, while the par-
ent nodes of the network are composed of “AND” and “OR”
logic units. However, neural networks can also represent non-
standard logic. A Neural Logic Network or simply Neulonet
has been proposed that emulates human decision logic which
are often too complex to be expressed neatly using standard
logic [Teh, 1995; Tan et al., 1996].

In this paper, we begin by focusing on the integration of
neulonets into a genetically programmed environment. First,
we introduce the concept of neulonets and show how they can
be combined to form complex decisions. We then describe a
GP system for evolving neulonets, and discuss how genetic
operations of crossover and mutation can be adapted to neu-
lonet evolution. Next, we demonstrate how the system can ef-
fectively solve a classification problem and extract rules from
the evolved neulonet. Finally we provide experimental results
to substantiate the use of neulonets as an improvement over
the use of standard logic networks in genetic programming.

2 Neural Logic Network
A Neulonet has an ordered pair of numbers associated with
each node and connection (figure 1). Let � be the output node
and ��� , ��� , . . . �	� be input nodes. Let values associated with
the node ��
 be denoted by (�
 , ��
), and the weight for the
connection from ��
 to � be (��
 , ��
). The ordered pair for
each node takes one of three values, namely, (1,0) for true,
(0,1) for false and (0,0) for “don’t know”. (1,1) is undefined.
The following activation function determines the output at � :

������� ���	�
����� ����!
�#"%$�& � if

�'
)(�� � �
*��
�+,��
-��
.�0/21
�3&4$5" � if

�'
)(�� � �
*��
�+,��
-��
.�067+81�3&4$�& � otherwise.

(1)

where 1 is the threshold, usually set to 1.

P
1

P
2

(a
1
,b

1
)

Q

P
N

(a
2
,b

2
)

(a
N
,b

N
)

(α2,β2)

(α1,β1)

(αΝ,βΝ):

Figure 1: A basic Neural Logic Network - Neulonet.

By applying equation (1) on a network in figure 2, the net-
work behaves like an expert system rule with an OR logic
operation as shown in the truth table.

(1,0)

(1,0)

(1,0)

(0,1)

(0,1)

(0,1)

(0,0)

(0,0)

(0,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,1)

(0,0)

(1,0)

(1,0)

(1,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,0)

(0,0)

P Q

P or Q

(2,1/2)P

Q (2,1/2)

P or Q

Figure 2: The above neulonet behaves like a disjunction rule.

We call a network in figure 2 a net rule – a rudimentary
network that can be chained with other similar networks just
like in a conventional rule-based expert system. The power of
a net rule, however, is not limited to standard boolean logic
operations. A wide range of different human logic in decision
making can be represented with net rules using different sets
of weights. Figure 3 shows some examples of net rules that
emulate a human decision maker’s behavior. Human decision
processes are often too complex to be expressed neatly using
standard logic. One such complexity is that human reasoning
can be biased by giving different degrees of importance to
different factors. A simple AND or OR operation will be
inadequate in representing varying degrees of bias.

For instance, rule (4) ”Priority” in figure 3 exhibits differ-
ent degrees of influence on the outcome of � with � � being
the most important factor, while � � will only be considered
when all other factors are unknown, i.e. (0,0). Another exam-
ple can be seen in rule (13) ”Silence means consent” where
Def represents the default action. If no one among � � , ��� ,
. . . , � � has any opinion, or if there is an equal number of per-
sons either for or against a motion, the default action is taken.
In all other cases, the majority wins. Net rules can combine to
form composite net rules to achieve more complicated deci-
sions. For instance, using the output of rule (7) ”Unanimity”
as the input

�
to rule (10) ”Veto”, both with n set to 2, an

XOR operation can be realized as shown in figure 4.
A neulonet combines the strengths of neural networks and

expert systems [Tan et al., 1996]. It was proposed that a
knowledge engineer could first encode his knowledge into
component net rules and later use real examples to do refine-
ment training to adjust the weights in the neulonet. Train-
ing in this case is by means of backpropagation [Teh, 1995],
which will pervasively modify all weights in the network. It
was shown that the neulonet’s performance improves after the
refinement training. However, one problem with backpropa-
gation is that after training, the logic of the net rules may not
be decipherable as the weights of the net rules have been al-
tered. The trained net rules may not be reused easily. In view
of this, a novel way of neulonet training by means of a genetic
programming paradigm is now introduced.

3 Genetic Programming
Genetic programming [Koza, 1992] is an extension of the
conventional genetic algorithm where instead of subjecting
bit patterns to genetic evolution, the individuals in the gene
population are computer programs. In the context of neulonet
evolution, the problem statement may be stated as follows:

”Given a set of input nodes, a library of net rules,
an output node, and a set of examples containing
instances of input values together with the corre-
sponding output decision, apply genetic program-
ming to construct a neulonet that represents a deci-
sion logic induced from the examples”.

The solution may be carried out in three steps:

1. Generate an initial population of neulonets comprising
of random compositions of net rules according to the
available input nodes and the output node.

�
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(13) Silence means consent
Pn

P2

P1

Def

Q

(1,1)

(2,2)

(2,2)

(2,2) �
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(14) 2-out-of-3 unless
overridden

Pn

P2

P1

R

Q

(2,2)

(3/n,3/n)

(3/n,3/n)

(3/n,3/n)

�
�
�
�

�

�� � � � ���
� � � �
	
� � � �
�

 ��

(6) Disjunction
Pn

P3

P2

P1

Q

(2,1/n)

(2,1/n)

(2,1/n)

(2,1/n)

�
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(7) Unanimity
Pn

P3

P2

P1

Q

(1/n,1/n)

(1/n,1/n)

(1/n,1/n)

(1/n,1/n)

�
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(11) At-least-k-yes (��� �)
Pn

P3

P2

P1

Q

(1/k,0)

(1/k,0)

(1/k,0)

(1/k,0) �
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(12) At-least-k-no (��� �)

Pn

P3

P2

P1

Q

(0,1/k)

(0,1/k)

(0,1/k)

(0,1/k)

�
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(9) Overriding
Pn

P2

P1

R

Q

(2n,2n)

(1,1)

(1,1)

(1,1) �
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(10) Veto
Pn

P2

P1

V

Q

(-3n,0)

(2,1/n)

(2,1/n)

(2,1/n)

�
�
�
�

��

�

� � � ���
� � � �
	
� � � �
�

 ��

(4) Priority
Pn

P3

P2

P1

Q

������������� �!���
)�"� �!�$# �%� �!�$#

)

�"� �!�'& �%� �!�'&
)

(1,1)

�
�
�
�

�

���� � � ���
� � � �
	
� � � �
�

 ��

(8) Majority influence
Pn

P3

P2

P1

Q

(1,1)

(1,1)

(1,1)

(1,1)

� �(
(1) Negation

P Q
(-1,-1)

� �(
(2) Affirmation

P Q
(1,0)

� �(
(3) Conformity

P Q
(1,1)

�
�
�
�

�

�� � � � ���
� � � �
	
� � � �
�

 ��

(5) Conjunction
Pn

P3

P2

P1

Q

(1/n,2)

(1/n,2)

(1/n,2)

(1/n,2)

Figure 3: Examples of component net rules.

(1,0)

(1,0)

(1,0)

(0,1)

(0,1)

(0,1)

(0,0)

(0,0)

(0,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,1)

(0,0)

(0,1)

(1,0)

(1,0)

(1,0)

(0,1)

(0,0)

(1,0)

(0,0)

(0,0)

P Q

P

Q

(1/2,1/2)

P xor Q

(−6,0)

(2,1/2)

(2,1/2)

(1/2,1/2)

P xor Q

Figure 4: An XOR composite net rule.

2. Iteratively perform the following substeps until the ter-
mination criterion has been satisfied:

(a) Fire each neulonet in the population and assign it a
fitness value using the fitness measure.

(b) Create a new population of neulonets by applying
the following three operations to neulonets chosen
with a probability based on fitness.
i. Reproduce an existing neulonet by copying it

into the new population.
ii. Create two new neulonets from two existing ones

by genetically recombining chosen parts using a
crossover operation applied at a randomly cho-
sen crossover point within each neulonet.

iii. Create a new neulonet from an existing one us-
ing a mutation operation at a randomly chosen
mutation point.

3. The neulonet that is identified to be the best individual
is designated as the solution to the problem.

For efficiency, the neulonet structure that undergoes evo-
lution is a labeled tree implemented using a prefix-ordered,
jump-table approach [Keith and Martin, 1994]. The initial
population of neulonets are generated in a similar fashion
as Koza’s [1992] “ramped-half-and-half” generative method.
We use a normalized fitness measure

� ��� $������ � based on the
errors produced by the neulonet,

�
, as well as the size of the

neulonet,
�

. The factor,
�
	�� &4$5"�

, is used to weigh the effects
of accuracy over size in the fitness measure. A higher value
for

�
places more emphasis on finding an accurate solution at

the expense of the size of the neulonet.
The crossover operation involves swapping the chosen

parts of two neulonets with constraints imposed on the swap-
ping process to preserve the syntactic integrity. For instance,
swapping should not leave any dangling intermediate output
nodes as such nodes will not be able to receive input values
during firing. Figures 5 and 6 illustrate a crossover operation
on two neulonets before and after the operation.

The mutation operation involves changes to a chosen neu-
lonet. A random mutation point is picked such that the neu-
lonet whose root is the mutation point is replaced by another
randomly generated neulonet. Figure 7 shows the effect of
the mutation operation on a neulonet with the ”Conformity”
net rule replaced by a ”Priority” net rule.

The probabilities assigned are: (i) reproduction: 15%, (ii)
crossover: 80%, and (iii) mutation: 5%.

(1/2,2)
(−3,0) (−6,0)

(a) Neulonet 1 (b) Neulonet 2

(1/2,2)

(2,1/2)

(2,1/2)
(2,1)

(2,1/2)

(1,1)

(2,1/2)

Figure 5: Two neulonets before crossover operation.

(1/2,2)
(−3,0) (−6,0)

(a) Neulonet 1 (b) Neulonet 2

(1/2,2)

(2,1/2)

(2,1/2)
(2,1)

(2,1/2)

(1,1)

(2,1/2)

Figure 6: Two neulonets after crossover operation.

Note that the ”Conformity” net rule appears redundant in
the activation of a neulonet and might be deemed not to be
doing anything significant in the evolutionary process. This
kind of net rule is similar to an intron in biology, which is a
chromosome that is never expressed and provides spacing be-
tween the genes [Angeline, 1994]. However, Levenick [1991]
notes that introns are useful in genetic algorithms.

4 Proposed Method
In [Tan et al., 1996], it was assumed that the knowledge engi-
neer has some prior knowledge to construct a neulonet, which
is later subjected to further refinement training. What if the
knowledge engineer has only a set of examples without any
other knowledge? One approach is to construct a neulonet
with random weights and train it with the examples. The re-
sultant neulonet is no different from an ordinary neural net-
work, as it is difficult to interpret the logic semantics from the
seemingly meaningless set of weights. Another approach is
to solve a set of inequalities arising from the activation func-
tion in equation (1) [Teh, 1995]. The solution is not unique.
Moreover, the process becomes more difficult with increasing
number of inputs and it may not be always possible to find a
set of interpretable weights to satisfy all the inequalities.

The genetic programming paradigm proposed here pro-
vides a third alternative for constructing a neulonet from ex-
amples. We shall illustrate the process using a simple exam-
ple from the Space Shuttle Landing Domain [Michie, 1988].

(2,2)
(−3,0)

(a) Before Mutation

(1,1)

(2,1/2)

(2,1/2)
(2,1)

(1,1)
(−3,0)

(2,1/2)

(2,1/2)
(2,1)

(b) After Mutation

Figure 7: Neulonet with a mutated net rule.

This data set comprises 15 instances and 6 attributes. Table 8
shows each instance being classified as either to auto-land or
not. To conform to the input requirements of the neulonet
structure, every distinct attribute-value pair has a correspond-
ing boolean attribute in a transformed data set. The valid val-
ues for these new attributes can either be yes, no or unknown.
In our example, the 6-attribute data set transforms to a 16-
attribute data set of boolean values.

Stable Error Sign Wind Magnitude Vis Class
? ? ? ? ? no auto

xstab ? ? ? ? yes noauto
stab LX ? ? ? yes noauto
stab XL ? ? ? yes noauto
stab MM nn tail ? yes noauto

? ? ? ? OutOfRange yes noauto
stab SS ? ? Low yes auto
stab SS ? ? Medium yes auto
stab SS ? ? Strong yes auto
stab MM pp head Low yes auto
stab MM pp head Medium yes auto
stab MM pp tail Low yes auto
stab MM pp tail Medium yes auto
stab MM pp head Strong yes noauto
stab MM pp tail Strong yes auto

Table 8: Space Shuttle Landing Domain data set.

For a particular neulonet evolution run, a 100% accurate
solution was produced in generation 5 which consisted of 8
basic net rules. Further evolution produced another 100% ac-
curate solution in generation 11 as shown in figure 9. This so-
lution consisted of a ”Priority” rule rooted at � , a ”At-Least-
2-Yes” rule rooted at

�
, and a ”Negation” rule rooted at � .

Magnitude_Strong

Wind_tail

(−1,−1)

Vis_no

(1/2,0)

Error_SS

Sign_pp

(1/2,0)

(1/2,0)

(4,4)

(1,1)

(2,2)

N

L

P

Figure 9: A solution to the Shuttle-Landing classification problem.

5 Extracting Rules from Neulonets
Extracting rules from neural networks has been studied by
many researchers [Gallant, 1993; Gaudet, 1996; Setiono and
Liu, 1996; Tan, 1997; Towell and Shavlik, 1993]. Exist-
ing work, however, basically utilizes standard logic, such as
negation, conjunction and disjunction. The rules extracted
are generally in the form of a decision tree equivalent to an
AND/OR tree based on some classification of the example
data. In our present work, the goal is to extract human de-
cision logic from the neulonets. The extraction is in fact a
straightforward process because the neulonets constructed are
just a composition of net rules which by themselves fully ex-
press the human logic in use. As for the case of the Space

Shuttle Landing Domain classification problem, the follow-
ing net rules are easily identified from the solution in figure 9.

� : Negation(Magnitude Strong)�
: At-Least-Two-Yes(� , Sign pp, Wind tail)� : Priority(

�
, Error SS, Visibility no)

In layman terms, the decision to auto-land the space shut-
tle is biased towards any two or more positive factors for a
”pp” sign, tail wind and a magnitude that is not strong. Oth-
erwise, the presence (absence) of an ”SS” error will result in
a decision to auto-land (manual-land) the shuttle. If this er-
ror is unknown, then the decision to auto-land (manual-land)
depends on a negative (positive) visibility.

6 Empirical Study and Discussion
Our analysis above shows that the proposed approach of us-
ing net rules in genetic programming should perform well
for data sets which encompass some form of ordered logic
reasoning. This analysis will be further confirmed via exper-
iments. In particular, we wish to verify whether using an ex-
tended set of net rules as logical units is comparable to, if not
better, than merely using a limited set of net rules compris-
ing the standard boolean logic of negation, conjunction and
disjunction (rules (1), (5) and (6) of figure 3). We selected
data sets commonly used and publicly available from the UC
Irvine data repository [Blake and Merz, 1998]. Data sets con-
taining discrete attribute data types were transformed to an
equivalent binary data set with one attribute for each attribute-
value pair in the original set. Moreover, data sets containing
continuous-valued attributes were pre-processed using a Chi2
Discretizer [Liu and Motoda, 1998] prior to the transforma-
tion. For the case of data sets having three or more class
values, a separate data set that performs a boolean classifica-
tion for each class value was created. Table 10 summarizes
the data sets used in our experiments.

Data Set # Instances # Attributes
Shuttle-Landing-Control 15 16

Iris-setosa 150 123
Iris-versicolour 150 123
Iris-virginica 150 123

Monk-1 432 17
Monk-2 432 17
Monk-3 432 17

Voting-records 435 32
Breast-Cancer-Wisconsin 699 90

Mushroom 8124 125

Table 10: Data set summary. #Attributes denotes the number of
boolean attributes in the transformed data set.

The entire library of net rules given in figure 3 was used for
our experiments. Each of the net rules (4) to (13), were rep-
resented by their 2- and 3-arity equivalents, while a 4-arity
“2-out-of-3 Unless Overridden” rule (14) was used. As a
large initial population was required to cater for a wide va-
riety of neulonets that could be evolved, we implemented a
distributed parallel GP-system on an AP-3000 Fujitsu dis-
tributed memory parallel processing system consisting of 32
nodes using a ring-type connection [Niwa and Iba, 1996].

Data Set Neulonet Standard
Shuttle-landing 100% 100%

3.0 (34.7) 5.5 (48.3)
Iris-setosa 100% 100%

1.0 (18.0) 1.0 (12.0)
Iris-versicolour 99.8% 99.3%

5.6 (230.0) 8.0 (286.7)
Iris-virginica 99.6% 98.8%

5.3 (154.0) 3.0 (133.3)
Monk-1 100% 100%

5.6 (31.6) 4.7 (24.0)
Monk-2 99.8% 93.2%

19.2 (456.4) 20.8 (544.5)
Monk-3 100% 99.1%

3.0 (26.6) 4.0 (30.3)
Voting-records 99.6% 97.7%

14.3 (356.3) 13.0 (538.7)
Breast-cancer 99.5% 99.4%

20.0 (552.0) 20.2 (666.0)
Mushroom 100% 100%

6.5 (46.2) 6.25 (71.3)

Table 11: Experimental results depicting classification accuracy for
the best individual. The numbers below the accuracy value denotes
the number of decision nodes and (number of generations).

In our experiments, we used an initial population of 10,000,
each having a depth of not more than four component net
rules, and allowed to evolve to a depth of not more than 17.
The evolutionary process would proceed until the classifica-
tion accuracy and size of the fittest individual were unchanged
for the last 100 generations. The weighting factor

�
used in

the fitness measure was set to 0.99. To further simplify the
best evolved neulonet, a set of eight most commonly used
simplification rules were applied recursively to identify com-
ponent net rules for elimination or recombination. Results
for evolving the best neulonet solution from an average of 10
runs using the set of net rules versus using standard boolean
logic are presented in Table 11.

6.1 Classification Accuracy
In terms of the classification accuracy, neulonet evolution
provided a comparable, if not better, result than standard logic
evolution in all cases. This was especially true for data sets
having an ordered logic reasoning as in the case of the Shut-
tle Landing Domain problem, or when the classification rules
encompassed a ”quantification” of standard boolean logic.
For example, in the Monk-2 data set, the classification rule
is given by [Thrun et al., 1991] as follows:

Exactly two of �
 � " ��� 	��"%$�� $�� $	�4$�
 $���
Clearly, it would be difficult to achieve a high classification
accuracy using only a composition of standard boolean logic
units. However, in the case of neulonet evolution, the expres-
sive power inherent in the set of net rules allowed for a more
accurate solution tree to be evolved.

6.2 Solution Size
Due to the neulonet’s ability to handle more complex deci-
sions, net rule evolution provided more compact solutions
than their standard boolean counterparts for the same classi-
fication accuracy, particularly for data sets having non-trivial

classification rules. Using the best evolution runs for both
empirical approaches in the Monk-2 data set, the profiles for
the number of decision nodes is shown in figure 12 for accura-
cies between 70% to 100%. Observe that the profiles for both
approaches are comparable in the case of classification accu-
racies of less than 90%, indicating that the classification rule
learned thus far was still relatively simple. However, as the
required accuracy increased, the apparent power of neulonets
in deriving complex decision rules resulted in a significantly
smaller solution size.

0
5

10
15
20
25
30
35
40
45
50

70 75 80 85 90 95 100

D

ec
is

io
n

N
od

es

Accuracy (%)
Figure 12: Profile for the number of decision nodes during net
rule(solid-line) versus standard boolean logic(dotted-line) evolution.

6.3 Number of Generations Required
A general drawback in net rule evolution was the longer time
needed to converge to an ideal solution due to the larger size
of the component net rule library. It has to be noted that the
experiment conducted actually gave the standard logic an ad-
vantage in that the rule set is small (only negation and 2-
or 3-arity conjunctions and disjunctions), while the popula-
tion sizes in both neulonet and standard logic evolution ap-
proaches were kept the same at 10,000 individuals. As a re-
sult, there were more opportunities for the small set of stan-
dard logic rules to quickly evolve to ideal individuals within
the population. Thus for problems involving simpler deci-
sions, standard logic evolution attained the required accuracy
faster. However, there were cases in which neulonet evolu-
tion was faster. This was observed from the accuracy profile
for the Monk-2 data set in figure 13.

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

A
cc

ur
ac

y
(%

)

Generation
Figure 13: Accuracy profile for net rule(solid-line) versus standard
boolean logic(dotted-line) evolution.

For accuracies of less than 95%, standard logic evolution
required slightly less generations. However, as the demand in
accuracy increased, it became increasingly difficult to evolve
a solution using only standard logic rules. The added advan-
tage in expressing complex rules during neulonet evolution,
on the other hand, produced a faster rate of convergence.

7 Conclusion
Genetic programming proves to be an interesting paradigm in
constructing neulonets with the prescribed human logic net
rules. The paradigm is also amenable to refinement train-
ing. A knowledge engineer could start by constructing neu-
lonets based on the human expert’s prior knowledge. The
constructed neulonets may then be subjected to the genetic
programming evolutionary process. Thus step 1 of the ge-
netic programming solution (i.e. generation of an initial ran-
dom population) may be skipped and instead, the process will
start from step 2 onwards.

This new mode of neural logic network learning, whether
learning from scratch or learning by refining the existing net-
work, preserves the logic semantics understandable for gen-
eral human decision making. The size of the net rule library
determines the granularity of the decision steps and the pro-
cessing time. A large library enhances the capability in ex-
pressing nuances among different decisions but at the expense
of a longer time to converge.

Further experiments will be carried out to investigate this
trade-off issue. Variants of crossover and mutation processes,
and fitness measures will also be studied. A long term plan
in future is to apply genetic programming on fuzzy neural
logic networks [Teh, 1995]. For such networks, the values
for input and output ordered pairs are real-valued between
0 and 1. Genetic programming will thus be an attempt to
evolve the best fuzzy decision rules. We envision an even
more exciting horizon of fuzzy neulonet learning with genetic
programming.

References
[Angeline, 1994] Peter J. Angeline. Genetic Programming

and Emergent Intelligence, in Kinnear, K.E, ed., 1994. Ad-
vances in Genetic Programming. Cambridge, Mass.: MIT
Press, 75–97.

[Armstrong and Thomas, 1996] William W. Armstrong and
Monroe M. Thomas. Adaptive Logic Networks. In The
Handbook of Neural Computation, Fieseler, E. and Beale
E., eds., Institute of Physics Publishing and Oxford Uni-
versity Press USA.

[Blake and Merz, 1998] Catherine L. Blake and C. J.
Merz. UCI Repository of machine learning databases.
http://www.ics.uci.edu/ � mlearn/MLRepository.html

Irvine, CA: University of California, Department of
Information and Computer Science.

[Gallant, 1993] Stephen I. Gallant. Extracting Rules from
Neural Networks. In Neural Network Learning and Expert
Systems, chapter 17, 315–330.

[Gaudet, 1996] Vincent C. Gaudet. Genetic Programming of
Logic-Based Neural Networks. In Genetic Algorithms for

Pattern Recognition, Pal, S.K. and Wang, P.P., eds., Boca
Raton: CRC Press, 213–226.

[Golubski and Feuring, 1999] Wolfgang Golubski and
Thomas Feuring. Evolving Neural Network Structures by
Means of Genetic Programming. In Genetic Program-
ming: Proceedings of the Second European Workshop,
EuroGP’99, Ricardo Poli, et al, eds., Springer-Verlag
Lecture Notes in Computer Science, Vol. 1598, 211–220.

[Keith and Martin, 1994] Mike J. Keith and Martin C. Mar-
tin. Genetic Programming in C++: Implementation Issues,
in Kinnear, K.E. ed., 1994. Advances in Genetic Program-
ming. Cambridge, Mass.: MIT Press, 285–310.

[Koza, 1992] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, 1992.

[Levenick, 1991] James R Levenick. Inserting introns im-
proves genetic algorithm success rate: Taking a cue from
biology. In Proceedings of the Fourth International Con-
ference on Genetic Algorithms, Belew, R.K; and Booker,
L.B., eds., San Mateo, CA: Morgan Kaufmann Publishers
Inc., 123–127.

[Liu and Motoda, 1998] Huan Liu and Hiroshi Motoda. Fea-
ture Selection for Knowledge Discovery and Data Mining.
The Kluwer International Series in Engineering and Com-
puter Science, Vol. 454, 161–168, Kluwer Academic Pub-
lishers, Boston.

[Michie, 1988] Donald Michie. The Fifth Generation’s Un-
bridged Gap. In The Universal Turing Machine: A Half-
Century Survey, Rolf Herken (ed.), 466–489, Oxford
University Press.

[Niwa and Iba, 1996] Tatsuya Niwa and Hitoshi Iba. Dis-
tributed Genetic Programming: Empirical Study and Anal-
ysis. In Genetic Programming : Proceedings of the First
Annual Conference 1996, edited by John, R. Koza et al.,
339–344. Cambridge, Mass. : MIT Press.

[Setiono and Liu, 1996] Rudy Setiono and Huan Liu. Sym-
bolic Representation of Neural Networks, Computer,
29(3), 71–77.

[Tan, 1997] Ah Hwee Tan. Cascade ARTMAP: Integrating
Neural Computation and Symbolic Knowledge Process-
ing, IEEE Transactions on Neural Networks, 8(2): 237–
250.

[Tan et al., 1996] Chew Lim Tan, Tong Seng Quah, and
Hoon Heng Teh. An Artificial Neural Network that Mod-
els Human Decision Making, Computer, 29(3), 64–70.

[Teh, 1995] Hoon Heng Teh. Neural Logic Network, A New
Class of Neural Networks Called Neural Logic Networks,
Singapore: World Scientific.

[Thrun et al., 1991] Sebastian Thrun, et al. The MONK’S
Problems: A Performance Comparison of Different Learn-
ing Algorithms. Technical Report CMU–CS–91–197,
Carnegie Mellon University, Pittsburgh, PA.

[Towell and Shavlik, 1993] Geoffrey G. Towell and Jude W.
Shavlik. Extracting Refined Rules from Knowledge-Based
Neural Networks, Machine Learning, 13(1), 71–101.

