
EuroGP2002
5th European Conference on Genetic Programming
3-5 April, Kinsale, Ireland

Genetic programming applied to strategies learning.

James Cunha Werner

Terence C. Fogarty

SCISM
South Bank University

103 Borough Road
London SE1 0AA

{wernerjc,fogarttc}@sbu.ac.uk

Abstract. This study addresses the problem of knowledge acquisition to
decision taken, applied to Tic -tac-toe game: a fix structure and rules, with a
reasonable number of solutions, each one carrying to a different result (win, lost
or tie). The comparative study focus the case where all possible states are
modelled by genetic p rogramming, and a set of rules are applied against the
opponent. The other approach is the acquisition of knowledge on fly, applying
each solution for a number of trials, and using genetic programming to obtain
the better solution.

Introduction.

Genetic programming (GP) is applied in mathematical problems solution, with a
previous defined set of operations and terminals, to obtains the best solution
according to a fitness function. The problem when working with strategies is that it
would not be represented by a mathematical modeling, but through a sequence of
rules with express the knowledge. A problem would have more than one possible
action, or more than one rule attended.

The decision take problem consists of two steps: define what are the possible
actions available and select between then the best one, modeled by a different three by
GP.

Tic-tac-toe is a good decision taking problem, where the goal consist in obtain two
different strategies: to win the game or to impede the opponent win (tie). The choice
is due to the fix structure and size of the problem, consisting of 9 cells, with a total of
19683 states combinations with 2781 possible moves. There is a program available in
Internet [1]- termed guru, whose solutions would be analyzed comparatively with
genetic programming results. To avoid repetitive results, the first move is a random
cell, the second is due by the guru, and then GP plays, then the Guru, … until obtain a
final result.

A previous approach available in literature is Peter Angeline [2] solution of Tic-
tac-toe problem obtaining with GP the programming with the complete move
sequence implemented into the solution.

EuroGP2002
5th European Conference on Genetic Programming
3-5 April, Kinsale, Ireland

The modeling algorithm.

The genetic programming (GP) algorithm ([3], [4] and [5]) mimics the evolution
and improvement of life through reproduction, when each individual contributes with
its own genetic information to building a new individuals with greater fitness to the
environment and higher chances of survival. Each ‘individual’ in a generation
represents, with its chromosome, a feasible solution to the problem; in our case, a
discriminate function to be evaluated by a fitness function.

The best individuals are continuously being selected, and crossover and mutation
take place. Following a number of generations, the population converges to the
solution that best represents the discrimination function (Fig. 1).

Fig. 1. Block diagram of Genetic programming.

There are two kinds of information defined for the algorithm: terminals (variable
values and random numbers) and functions (mathematical functions used in the
generated model).

The functions defined for genetic programming are: AND, OR, NOT and XOR,
and the terminals are: random number [0..1] and each possible cell with guru or GP
move.

The software application architecture.

Two different approaches are compared in this paper. The first try to model all
possible moves from a static dataset with all possibilities. Genetic programming
works in three different phases:

EuroGP2002
5th European Conference on Genetic Programming
3-5 April, Kinsale, Ireland

1. Training: where a set of complete information feeds the software to extract the
rules (or models).

2. Result application (or test): a data set with was not used into the training is
applied to the results, and the accuracy is measured, to check how complete
the rules are.

3. Inference of new rules: usually, the training data set is not enough to represent
all different states of the system, and the rules have to be updated.

To study the solution effectiveness, an integer random generator (1 to 9) plays
against the guru to measure the performance of a unlearn algorithms. Then all
possible states are applied to guru (fig 2), to obtain all possible best plays with are
submitted to GP to extract the rules and then 100 games are played with these rules
against the Guru. The fitness evaluate hit the mark number.

The errors total would be against all possibilities (with means that the rule would
result 0 when the best move isn’t the one), only considering the specific move or only
the cases where the sequence wins.

The second approach (fig 3) consists evaluate each individual with 100 games
played against the guru, and measure the fitness as:

winNumtieNumFitness _*0.10_*0.5 += (1)

Other point to consider when the goal is obtain the rules for each possible state is

the choice sequence, because in one state there are more then one possible move. Two
solutions are analyzed: by the distribution number of the state occurrence or using the
victory information. Both are available after some training games, or using all
possible configurations.

Fig. 2. Training and test architecture for complete state approach.

Possible states
Tic-tac-toe
Guru

Best play

Genetic programming

Set of rules Tic-tac-toe
Guru

New states

EuroGP2002
5th European Conference on Genetic Programming
3-5 April, Kinsale, Ireland

Fig. 3. Training and test architecture on fly.

Results.

Table 1 show the results for each different point of view, with a population of 30
individuals and 1000 generations. Other 100 games are played with the rules, with are
not available during the training, and this results are evaluate to the total of Tie, wins
and lost.

Table 1. Results of GP player – test condition.

Algorithm Number of Tie Number of lost Number of wins
Random moves 6 94 0

The fitness
measures all
possible
move

12 88 0

Fitness only
for each
position

33 67 0

Rule
extraction

Fitness only
where are
possibility of
win

25 75 0

On fly Big frequency
sequence

92 8 0

 Best
opportunity
and then big
frequency
sequence

92 8 0

100 games Tic-tac-toe
Guru

Fitness for each tree set.

Genetic programming

EuroGP2002
5th European Conference on Genetic Programming
3-5 April, Kinsale, Ireland

Analysis and conclusions.

The extraction rule from the total possibilities space looked to be the better
solution for the problem, because all states are mapped into the training set, and the
on-fly training will not cover all possibilities, but only a few (100 games with 9
moves against 2781 possible moves).

However, genetic programming extracted the rules for each cell much better with
the training on fly, and the strategy of move sequence with the big frequency or the
best opportunity and then big sequence don’t show any difference, probably because
the big occurrence would be the best one.

References:

1. Chapel, S.; “Uses alpha-beta pruning minimax search to play a perfect game”
www.programmersheaven.com/zone8/cat121/1020.html

2. Angeline, P. J. and Pollack, J. B. (1992) The Evolutionary Induction of Subroutines, In The
Proceedings of the 14th Annual Conference of the Cognitive Science Society. Hillsdale, NJ:
Lawrence Erlbaum, pp 236-241; Angeline, P. J. and Pollack, J. B. (1994) Coevolving High-
Level Representations, In Artificial Life III, C. Langton (ed.), Addison-Wesley: Reading
MA, pp. 55-71; see http://www.natural-selection.com/people/pja/

3. HOLLAND,J.H. “Adaptation in natural and artificial systems: na introductory analysis with
applications to biology, control and artificial intelligence.” Cambridge: Cambridge press
1992 reedição 1975.

4. KOZA,J.R. “Genetic programming: On the programming of computers by means of natural
selection.” Cambridge,Mass.: MIT Press, 1992.

5. LilGP “Genetic Algorithms Research and Applications Group (GARAGe)”, Michigan State
University; http://garage.cps.msu.edu/software/lil-gp/lilgp-index.html

